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Equivalence classes of related evolution equations and 
Lie symmetries 

E G Kalninsi and Willard Miller Jr$§ 
* Mathematics Department,  University of Waikato, Hamilton, New Zealand 
t School of Mathematics, University of Minnesota,  Minneapolis, M N  5.5455, USA 

Received 10 March 1987 

Abstract. This is an  extension of earlier work by the authors which gives a correspondence 
between Lie symmetry operators (with non-trivial time dependence)  for a given evolution 
equation and  those evolution equations related to the given one  by a change of independent 
and  dependent  coordinates.  Here we work out the correspondence between symmetries 
of a system of evolution equations U, = K ( y ,  a )  and  those systems U ,  = J ( x ,  U )  related to it 
by a change of coordinates I = T ( s ,  x, U ) ,  y = Y ( s ,  x, u j ,  U = V ( s ,  x, U )  and  show (extending 
ideas of Humi a n d  Rosencrans) how to determine the related equations directly from the 
symmetry operators without solving a system of differential equations. In general there 
are  multiple evolution equations associated with a given symmetry; for the case of scalar 
evolution equations we compute explicitly the structure of each equivalence class. 

1. Introduction 

An evolution equation is a system of m 3 1 partial differential equations of the form 

(*) Q z  u r - K ( ~ ,  0, ur , . . i , , )=O (1.1) 

u = ( u ' ,  . . . ,  U") 
U ,  = a , d  

where 

Y =  ( Y I , .  . . I  Y " )  
I ' I  

U:, ,,, = a:il . . . a;:<v 

and K = ( K ' ,  . . . , K " )  depends on only a finite number M > 0 of the derivatives U: ,...,,, . 
We assume that K is a local analytic function of its n + m +  M variables and, on 
occasion, that it is a polynomial or rational function of the derivatives v ~ , , , . , , ,  , i, +.  . . + 
in > 0. Furthermore, we assume that the system (1.1) is locally solvable in the sense 
of Olver [ l ,  p 1621. A solution of (1.1) is a function U = u ( t ,  y ) ,  analytic in the variables 
( t ,  y )  such that (1.1) is well defined and identically satisfied for all ( 1 ,  y )  E S where S 
is a non-empty open set in C"". ( In  the following all functions are assumed to be 
locally analytic.) A second evolution equation 

( + I  = U, - J ( x ,  U,  U/, ../,, 1 = 0 

U = ( U 1 , .  . . , U") x = ( X I , .  . . , x " )  (1.2) 

(1.3) 

is related to (*) if there is a coordinate transformation 

t = T ( s ,  x, U )  Y = Y ( s ,  x, U )  U = V ( s ,  x, U )  

I The work of this author was supported in part by the National Science Foundation under  grant MCS 
82-19847. 
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which maps (*) to (+). Here we assume that the Jacobian det(d(t, y, u ) / d ( s ,  x, U)) is 
locally non-zero and limit ourselves to solutions u(s,  x) of (+) such that 

det(a(T(s, x, u(s, XI), Y ( s ,  x, u(s,  x ) ) ) l a (s ,  x)) 

is locally non-zero. Thus, given u ( s ,  x) we can solve the equations t = T, y = Y for s, x 
and then substitute this result into U = V to obtain U =f( 1, y) .  Similarly equations (1.3) 
can be inverted to express s, x, U as functions of t, y, U and, in particular, to transform 
a solution U( t, y )  of (*) into a solution U = h(s ,  x)  of (+). 

It is evident that an arbitrary coordinate transformation of the form 

t = s  Y = Y ( x )  U = V ( x ,  U )  (1.4) 

will map ( * )  to a related evolution equation, so we consider such transformations as 
trivial. Furthermore, the more general transformation 

t = s  Y = Y(x, U )  U = V ( x ,  U )  (1.5) 

with det(aY(x, u ( s , x ) ) / ~ x )  # O  may map (*) to a related evolution equation if it 
preserves the polynomial nature of the evolution equation. In addition, transformations 
of the form 

t = s + cp (x, U ) y = x  v = u  (1.6) 

(with the property that d,  = a , )  may sometimes map an  evolution equation to another 
evolution equation but we shall show that such mappings with qx # 0 or cp,, # 0 can 
occur only for very restricted classes of evolution equations. Our interest is in determin- 
ing all equivalence classes of evolution equations related to a given equation through 
transformations (1.3) with T, = a,T(s, x, U )  # 0, where two evolution equations are 
equivalent if  they are related by the composition of a coordinate transformation (1.5) 
and a transformation (1.6). Also we will investigate the conditions under which an 
evolution equation admits the non-trivial transformation (1.5) or (1.6). In  [ 2 ]  this 
problem was essentially solved for the special case of scalar evolution equations and 
transformations (1.3) such that Tu = Y, = 0. Here we extend an idea found in [3] and 
[4] to treat the general case. 

As is well known [ 11, every generalised Lie symmetry of (1.1) can be expressed in 
the standard form 

(1.7) X ( f )  =f* a, + D , f .  d c ,  + D:li . . . D::',, f * a , ,  , 
il+ ...+ t,, 2 I 

wheref=f( t ,y ,  U, .,,,I is an m-tuple and D,, D,.h are total derivatives, e.g., 

In  particular, X ( / )  is a generalised Lie symmetry provided 

x(f)n = 0 

whenever = 0. Special Lie symmetries are the point symmetries of the form 

Y = T( 1, Y, u)a ,  + U 1, Y, U 1 a,, + 17 ( I, Y, U 1 a,. (1.9) 

These operators correspond to standard form operators X ( f )  [ l ,  51 where 
I1 

f = q -  c g ' U , l - d .  
, = I  

(1.10) 
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In § 2 we demonstrate that there is a one-to-one association between equivalence 
classes of evolution equations related to (*) and point symmetry operators (1.9) for 
(*) such that T # O .  The demonstration will include the explicit construction of an  
evolution equation in each equivalence class. In 0 3 we determine conditions under 
which an evolution equation which is either a polynomial, rational or general analytic 
function of its spatial derivatives, will admit a non-trivial coordinate transformation 
(1.5) or (1.6). We show that for equations of physical interest these transformations 
are seldom admitted, so that each equivalence class consists only of equations related 
by trivial coordinate transformations (1.4). In particular we will show that no scalar 
polynomial evolution equation admits a non-trivial transformation (1.5) if the equation 
(1.1) depends non-trivially on at least one spatial derivative U , ,  1 , ,  with i, +. . . + i, 5 2; 
furthermore the equation admits no transformation (1.6) with (o, # 0. Moreover, unless 
the equation is degenerate in a certain precise sense it will admit no transformation 
(1.6) with (ox # 0. 

2. The fundamental relationship 

Theorem 1 .  Let 

f i = v , - K ( y , u , v , ,  , , , ) = O  (2.1) 
be an evolution equation. There is a one-to-one correspondence between (equivalence 
classes o f )  evolution equations related to a = 0 via coordinate transformations (1.3) 
with T, # 0 and point symmetry operators for fi = 0 of the form 

Y = T ( f , Y ,  U M f + 5 ( f , Y ,  u ) . a , + r l ( f , Y ,  u ) . a ,  (2.2) 
with T # O .  

Proof: First of all we note that a ,  =a, if and only if the coordinates ( t ,  y ,  U )  and (s, x, U )  
are equivalent in the sense that they are related through a composition of transforma- 
tions (1.5) and (1.6). 

Now suppose the evolution equation (1.21, + = O ,  is related to (2.1). It is obvious 
that Y = a, is a point symmetry operator for (1.2), hence for = 0. From (1.3) and 
(1.10) we see that Y corresponds to the standard form symmetry X ( f )  with 

f =  a,V - ( a ,  Y ’)U,.! - ( a , T ) K  
J 

(2.3) 

and a,T # 0. 
Conversely, suppose Y, (2.21, is a point symmetry operator for R = 0, with T # 0. 

We will construct an evolution equation related to fi = 0 for which Y is the time 
translation generator. Since Y is a symmetry operator it generates a flow on the 
coordinate space 

exp a y :  ( f , Y ,  D ) + ( t * ( a ) , Y * ( a ) ,  u * ( a ) )  

which takes solutions of (2.1 1 to solutions, [ l ,  5,6]. Indeed this flow is uniquely 
determined by the equations 

( d f * / d a ) ( c Y ,  1, J’, U )  = T (  f * ,  J j * ,  U*) 

(aJ’*laa)(a, c y ,  U )  = 5 ( f * , Y * ,  U*) 
( a u * l a o ) ( a ,  f , Y ,  U )  = I l ( t ” , y * ,  U*) 
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with initial conditions 

t * ( O )  = t Y * (O)  = y  U * ( O )  = U. (2.4) 

t*(a,  CY, O ( t , Y ) )  = t *  (2.5) 

Let u ( r , y )  be a solution of (2.1). It follows from (2.4) that for la1 small the equations 

y * ( a ,  1, t, d t , Y ) )  =Y*  

can be solved for t and y. Substituting this result into the expression for U* we obtain 

1 , * ( a , f * , y * ) = u * ( a ,  t , y , u ( t , y ) ) .  (2.6) 

Since Y is a symmetry operator it follows that U*( a,  t*, y * )  is a solution of (2.1) [ 1,5,6]: 

UT* = K ( Y * ,  U*, , , ,I.  
Furthermore a straightforward computation using (2.3) yields 

n 

uX(a ,  t * ,  y * )  = q( t * ,  y* ,  U*) - c [’( t * ,  y * ,  u*)u;l. 
J = l  

- d t * ,  Y * ,  U * ) K ( Y * ,  U*, U: ,,,). 

Thus the function u*(a, t* ,  y * )  satisfies two evolution equations simultaneously, i.e. 
the flows are commuting. Now set t* = c, c constant, in (2.7). Since 7 # 0 we can solve 
the equation t*(a, t, y, U )  = c to obtain a as a function a = f (c ,  1, y, U). In  place of our 
original coordinates (1, y ,  U )  we have new coordinates (s, x, U )  where 

s = a = f ( c ,  1, y, U )  

u = u * =  V ( c , t , y , o ) .  

x = y * =  X ( C ,  t, Y, 0 )  

Equation (2.7) is now meaningless but (2.8) takes the form 

(2.9) 

An important feature of the preceding construction is that the related evolution equation 
(2.10) can be determined immediately from the original evolution equation (2 .1 )  and 
the symmetry (2.2). There is no need to determine the coordinate transformation (2.9) 
and then change coordinates in (2.1). For example, the Hamilton-Jacobi equation 

(2.1 1 )  

where the potential W is homogeneous of order -2, ( W ( A y )  = K2 W ( y ) ) ,  clearly admits 
the symmetry 

n 

Y = ( 2 t - - l ) d , +  y,a .,,; 
, = I  

(2.12) 

It follows immediately from (2.10) that the related evolution equation is (for c = 0) 
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The explicit coordinate transformation mapping (2.1 1) to (2.13) can be obtained by 
solving equations (2.3): 

U = U. Y ,  s = - 4  In( 1 - 2 t )  x, = (1 -2t)’12 

If W ( y )  is invariant under the translations y ,  + y ,  + a ,  1 < i <  n, for all a then (2.11) 
admits the symmetry 

n 

Y’ = -a,  + a.v, 
, = I  

The related evolution equation is 

U ,  = c ( U S ,  - U , )  + W ( X ) .  
, = I  

If W ( y )  is homogeneous of order +2  then (2.11) admits the symmetry 

with related evolution equation 

U ,  = 

The system of equations 

( u f ,  - x,u, , )  + 2u + W ( x ) .  
, = I  

I ’  
U ,  = U; 

U; = ;U;,, +;u’U: 

Y = -2 ta ,  - y a ,  +2v‘a,1+3~’a;. 

U :  = 224’ + x u  : + U’, 
U : =  ~ u ’ + x u ’ , +  t u : , ,  + , U  X I 1  U ~. 

U, = U,,/Vf 

(equivalent to the Boussinesq equation) admits the scaling symmetry 

The related evolution equation (for c = I) is 

The evolution equation 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(equivalent to the heat equation by a ‘trivial’ coordinate transformation [6, p 3161) 
admits the symmetry 

(2.22) Y = -d, - ;y t ’a ,  + ra, 
which corresponds to the related equation ( c  = 1)  

U ,  = u y v /  U :  + 1 + ixuu, .  (2.23) 

Additional examples can be found in [2]. Note that a solution of (2.10) with U ,  = O  
yields a group-invariant solution of (2.1) [7,8]. 
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3. The equivalence classes 

In general the association between related evolution equations and point symmetry 
operators is not strictly one to one because transformations of the form (1.5) or (1.6) 
may map one evolution equation to another and these transformations d o  not alter 
the symmetry operator. If the evolution equation (1.1) is allowed to be a rational or  
a general analytic function of the derivatives U,,..,,,,, rather than a polynomial function, 
then an arbitrary transformation 

t = s  Y = Y(x, U )  U = V ( x ,  U )  (3.1) 

will indeed map (1.1) to another evolution equation (1.2). However the polynomial 
restriction on the derivatives places severe limitations on these transformations. Indeed, 
for scalar evolution equations we shall show that necessarily d Y,/au = 0, 1 s is n, 
unless (1.1) is a first-order linear partial differential equation. (The trivial transforma- 
tions 

t = s  Y = Y ( X )  U = V ( x ,  U )  

always map evolution equations to evolution equations.) Even for analytic evolution 
equations which are not required to be polynomials in the derivatives u, , , , , ~ , , ,  the 
transformations 

t = s + (p( x, U )  y = x  V ' U  (3.2) 

for non-constant (p will ordinarily not map these equations to other evolution equations. 
We shall derive a degeneracy condition on the evolution equation that is necessarily 
satisfied if the equation admits a non-trivial transformation (3.2). For scalar evolution 
equations we shall derive the precise conditions under which transformations (3.2) are 
admitted; in particular, d q / d u  = 0 always unless (1.1) is a first-order linear or  quadratic 
partial differential equation. Finally, we shall compose the transformations (3. l ) ,  (3.2) 
and show for scalar polynomial, rational and general analytic evolution equations the 
connection between related equations and Lie symmetries is one to one (modulo trivial 
coordinate transformations); the only exceptions being first-order linear and quadratic 
equations, and  higher-order equations that are degenerate in the sense of theorems 4 
and 5. For vector evolution equations the situation is much more complicated and we 
give only partial results. 

We first determine the conditions under which the scalar evolution equation 

E vI - K ( Y,  U, U , ,  ,,, 1 = 0 (3.3) 

a polynomial in the M > 0 derivatives U , ,  ,,,, is mapped to a similar evolution equation 
by a coordinate transformation of the form 

t = s  Y =  Y(X, U )  v = V ( x ,  U )  (3.4) 

Y = ( Y , ,  . . . , Y ~ ) ,  x = ( X I , .  . . , x,,), where 

det(aY(x, u(s,  x))/dx) f 0. 

Defining the n x n coordinate transformation matrix 

(3.5) 
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we see that 

U,, , i  = BA,h'Anlu,,, ,h +(terms involving first derivatives of U )  
U,, = A;l (a , iV+a.Vuxi )  

U, = B A , ~ ~ A ~ ' A ; ) U , ~ , . , . ,  
+ (terms involving second and lower-order derivatives of U )  

. . .  
Here we sum over repeated indices on the right-hand sides of (3.6) and  

B = ( l  -n)a.V+A,l(a.Va,iY,-d,,Vd.Y,)=f(x, u ) /de t  A (3.7) 

n 

det A = det(d,,Y,) + det 
h = l  

Also 

(3.9) 

Now suppose a,Y Z 0. Then det A must be functionally dependent on at least one 
u X h ,  for otherwise det A = 0 which is impossible. Further each term A,,'  is a rational 
function of the derivatives U , ,  : 

A;' = ( af;(r, u)urI + b,,(x, U )  (det A ) - ' .  
k - l  1 

Substituting expressions (3.4), (3.6), (3.7) and (3.9) into (3.3) we see that (3.3) will 
transform to another evolution equation if and only if (det A)K is a polynomial 
function of the derivatives of U. 

Suppose the highest-derivative terms v,l ,, appearing in K are those of order q L 2 
where q = i, +. . . - t i , , .  Then if (det A ) K  is a polynomial in the derivatives of U it must 
take the form 

Since the inverse of the transformation (3.4) maps the new evolution equation back 
to (3.31, it follows that K must be linear in the derivatives U , ,  ~ , ,  of order q :  

K = 1 C,,, y ,  u ) u , , , ,  ~ +(lower order terms). (3.1 1) 
I , ,  h - 1  8 

I n  order for (3.10) and (3.11) to hold there must exist a non-zero function g(x, U )  such 
that 

c , k , , A k l h l  . . . Ak,,hI= C h , ,  ,h,,g. (3.12) 

on the left-hand 
k i .  .k, 

At least one term c,-~ icl is non-zero and the coefficient of u X i l . .  . U 
side of (3.12) is Y, 

eel, . ~ , , a , y h ,  . . . a,yh,,. 
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Thus a,Y = 0, a contradiction. 

equation (3.6) that (det A ) K  is a polynomial in the U,, if and only if 
It follows that if a,Y + 0 we must have q = 1. Then it is evident from the first 

" 
(det A ) K  = ck(x ,  u)u,, + d ( x ,  U ) .  

k = l  

Thus, 
n 

K = c G ( Y ,  U)U. , . ,  + m y ,  U )  (3.13) 

and it is evident that every evolution equation of this form admits an arbitrary coordinate 
transformation (3.4). 

k=l 

Theorem 2. If a scalar polynomial evolution equation U, = K is mapped to another 
scalar polynomial evolution equation by a transformation 

f = S  y = Y(X, U )  U =  V ( x ,  U )  

with a,Y + 0 then K takes the form (3.13). 
Next we consider the possibility that the transformation 

t = s + c p ( x , u )  y = x  u = u  (3.14) 

will map the polynomial evolution equation 

(3.15) 

to another polynomial evolution equation. Suppose the highest-derivative terms U:, ,,, 
appearing in K are of order q = i ,  + . . . + in 3 2 .  A necessary condition that the transfor- 
mation (3.14) map (3.15) to another evolution equation is 

W a u , ,  = 0 
for all derivatives with j ,  + . . . + j ,  + I = q, 1 s 1 s q. (This condition applies even if the 
requirement is dropped that K is a polynomial in the derivatives.) A straightforward 
computation yields the following lemma. 

Lemma 1 .  A necessary condition that the evolution equation (3.15) is mapped to 
another evolution equation by the transformation (3.14) is 

for 1 d h, 1 m, and all k, 3 0  with k, < q. Here ( z ; )  is a binomial coefficient. 
In the scalar case ( m  = 1)  this necessary condition reduces to 

for all k, 2 0 with Er=, k, < q. 

that 
We now treat the scalar case in detail to derive necessary and sufficient conditions 

f = s + p(x, U )  y = x  u = u  (3.18) 
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map a scalar evolution equation to an  evolution equation. Suppose first that ap/au f 0. 
Making use of a trivial transformation (1.4) we can assume that (3.18) takes the simple 
form 

t = s + u  y = x  U = U. (3.19) 

Thus, 

(3.20) 

Now suppose the highest derivative terms in K are of order 4 2 2 .  Then with the 
substitution (3.19) a necessary condition for the evolution equation s1= 0 to be mapped 
to another evolution equation is that the coefficients of each of the derivatives U,, , , , < I  

vanish where either I > 1 or 1 = 1, J ,  +.  . . +j, > 0. Suppose this necessary condition is 
satisfied. Then in the expression of all derivatives U,, ,,, in K as U derivatives we can 
set equal to zero all terms involving the U,, ,,,‘I. Thus we obtain 

UtI ... !,, 
ut , . . . I , ,  - - 1 + U, 

(3.21) 

and the evolution equation R = 0 takes the form 

where Mk is a homogeneous polynomial of order k in the derivatives u , ~ , , , , ,  (with 
coefficients that are functions of x, U )  and MN # 0. Thus, 

(3.22) 

and this is equivalent to an  evolution equation U, - J = 0 if and  only if the coefficients 
of U:, 1 > 1 ,  vanish identically in (3 .22)  and the coefficient of U, is a non-zero function 
f ( x ,  U). (Indeed if (3.22) has multiple roots as a polynomial in U, then any one root 
U, = Jh yields a polynomial in the derivatives U,, ,,, which is of strictly lower order than 
that in U ,  = K. However, the inverse transformation from U to U cannot possibly increase 
the order of J h .  Thus (3.22) must have a single root of multiplicity one.) Since the 
terms Mk are either strictly independent or  identically zero, it follows that there are 
only two possibilities: 

(3.23) 
( i i )  U ,  + M,+ 1 = O .  

It is evident that case ( i )  cannot occur for 4 > 1 because condition (3.17) with d p l d y ,  = 
U , , ,  K = MI/(  1 + U,) + MO requires that K depend linearly on the U,,,, which is imposs- 
ible. Case ( i i )  with K = M2/(1  +U,)*+ 1 is more difficult to rule out. Conditions (3 .17)  
imply that 

Substitution of this expression into (3.17) and some tedious algebra shows that 
..... i , , ,k 0. 
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If q = 1 then condition (3.17) no longer applies and cases (3.23(i), (ii)) occur in 
complete generality where the Mi are homogeneous polynomials of degree i in the 
first derivatives 

(3.24) 

Next we derive necessary and sufficient conditions that the transformation (3.18) 
map a scalar polynomial evolution equation to a polynomial evolution equation where 
acplau = 0, acplax + 0. Making use of a trivial transformation (1.4) we can assume that 
(3.18) takes the form 

l = s - x i  y = x  U = U. (3.25) 

It follows that 

Now suppose the highest derivative terms in K are of order q ’ S 2 .  Then from (3.17) 
with d q l d y ,  = -a,, we find aK/au,, ,,, = 0 i f  C q, = q’ and q ,  > 0. Since all qth order 
derivatives of U can be expressed in terms of qth order derivatives of U, if 4‘- 1 2  2 
we can apply (3.17) again for q = 4’-  1 and conclude that a K / a u , , ,  q ,  = 0 ifCq,  = q’- 1 
and q,>O. Continuing in this fashion we find that a necessary condition for the 
transformation (3.25) to map R = 0 into another evolution equation is aK/au,, q,,  = 0 
whenever q ,  > 0 and C q, 3 2. It follows easily that the necessary and sufficient condition 
for (3.25) to map R = 0 into a polynomial evolution equation is that this equation take 
the form 

- U t - K ’ ( Y , u , u , , ,  , k l ) - 4 Y , 4 u , , = 0  (3.27) 

where k, f 1 and a + 1. If  q = 1 this same necessary and sufficient condition holds with 
p = 1. 

Theorem 3. If  a scalar polynomial evolution equation R = U, - K = 0 is mapped to 
another scalar polynomial evolution equation by a transformation 

t = s + q ( y ,  U )  y = x  U = U  

with d q  P 0 then R is equivalent via a ‘trivial’ transformation to one of the canonical 
forms (3.24) or (3.27). 

The most general possible coordinate transformation mapping a scalar polynomial 
evolution equation to another such equation (without changing the time symmetry 
operator) can be expressed as the composition of the transformations (3.4) and (3.18). 
A tedious but straightforward argument using the techniques already introduced in 
this section shows that this composition leads to no ‘non-trivial’ mappings between 
evolution equations other than those already discovered. 

Theorem 4.  The only scalar polynomial evolution equations which can be mapped to 
other scalar polynomial evolution equations by ‘non-trivial’ transformations 

r = s + c p ( x , u )  Y = Y ( x ,  U )  U = V ( x ,  U )  
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are equivalent via ‘trivial’ transformations 

t = s’ y = Y’(x ’ )  U = V ( x ‘ ,  U’) 

to one of the canonical forms (3.24) or (3.27). 
We next examine the effect on these results of permitting K in the scalar evolution 

equations R = U, - K = 0 to be a rational function of the spatial derivatives U,, ,,,. Now 
the transformations 

t = s  y =  Y(x,  U )  U = V ( x ,  U )  (3.28) 

are ‘trivial’ since all these transformations map a scalar rational evolution equation to 
a scalar rational evolution equation. The possible ‘non-trivial’ transformations are 
those of the form 

t = s + c p ( x , u )  s ’ = X  U = U  (3.29) 

with d q  + 0. Using a suitable transformation (3.28) we can assume that (3.29) takes 
the form (3.25): 

t = s - x X ,  y = x  U = U .  

Applying an argument used earlier in this section we can show that aK/au,, . q,,  = 0 for 
q l  > 0 and C q, 3 2 if = 0 admits the transformation (3.2). The transformed equation 
thus takes the form 

(3.30) 

where P h ,  Q, are polynomial functions of the derivatives U,, ./,,, PPQq # 0 and (Pol + lQol # 
0. Multiplying both sides of (3.30) by the denominator of the right-hand side we see 
that the resulting expression defines a rational evolution equation if and only if the 
coefficients of U :  for k > 1 are identical on each side. The result is the theorem below. 

Theorem 5. The only scalar rational evolution equations which can be mapped to 
other rational evolution equations by ‘non-trivial’ transformations (3.29) are those 
equivalent via ‘trivial’ transformations (3.28) to one of the canonical forms 

( i )  U, = P” + P ,  U, p = l  q = o  

Finally we examine the effect of permitting K in the scalar evolution equations 
R = U, - K = 0 to be a local analytic function of the spatial derivatives Again the 
transformations (3.28) are ‘trivial’ and the transformations (3.29) are ‘non-trivial’. By 
applying a suitable transformation (3.28) we can assume that (3.29) takes the simple 
form (3.25). 

Theorem 6. The only scalar analytic evolution equations which can be mapped (locally) 
to other analytic evolution equations by ‘non-trivial’ transformations (3.29) are those 
equivalent via ‘trivial’ transformations (3.28) to an  equation in the canonical form 

U, - K ( Y ,  U, utz ,,,, =o.  
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